CBT-STAT and CBT-STAT-H USER GUIDE

SMART ENERGY CONTROL

© Cylon Controls Ltd. 2019. All Rights Reserved.

CBT-STAT and CBT-STAT-H (MAN0120US rev 16)

Information in this document is subject to change without notice. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used only in accordance with the terms of those agreements. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or any means electronic or mechanical, including photocopying and recording for any purpose other than the purchaser's personal use without the written permission of Cylon Controls Ltd.

TRADEMARKS

All trademarks and trade names used in this document are acknowledged to be the copyright of their respective holders.

UniPut[™] technology is covered by UK Patent GB 2 400 991 and Irish Patent 84413

www.cylon.com www.cylon-automatrix.com

Style conventions used in this document: UI Text: Text that represents elemets of the UI such as button names, menu options etc is presented with a grey background and border, in Tahoma font which is traditionally used in Windows UIs. For example: Ok Standard Terms (Jargon): Text that is not English Language but instead refers to industry standard concepts such s Strategy, BACnet, or Analog Input is represents in slightly condensed font. For example: BACnet Text that represents File paths, Code snippets or text file Code: configuration settings is presented in fixed-width font, with a grey background and border. For example: \$config file = c:\CYLON\settings\config.txt Parameter values: Text that represents values to be entered into UI fields, or displayed in dialogs is represented in fixed-width font with a shaded background. For example 10°C Product Names: Text that represents a product name is represented in bold coloured text. For example CBX-8R8-H PC Keyboard keys: Text representing an instruction to press a particular key on the keyboard is enclosed in square brackets and in bold folt. For example: [Ctrl]+[1]

SECTION 1 :	Introduction			
What are CBT-ST	TAT and CBT-STAT-H?	6		
SECTION 2 :	User Mode			
User Mode		8		
SECTION 3 :	Engineering Mode			
Engineering Mo	de	12		
Using the Engineering Mode menus				
Available parameters				
Balancing Procedure - CBV-2U4-3T(-N)				
Balancing Proce	Balancing Procedure – CBT12iVAV			

SECTION 1 : INTRODUCTION

WHAT ARE CBT-STAT AND CBT-STAT-H?

The **CBT-STAT** and **CBT-STAT-H** provide dedicated, visually appealing Room Control displays for use with **CBV** and **CBT** Unitary Controllers.

Both displays allow the user to view and adjust selected 7parameters within the controller to which they are connected, and each has an integrated temperature sensor. The **CBT-STAT-H** also has an integrated humidity sensor.

While the display can be used for local control, the **CBT12iVAV** and **CBT14** Unitary Controllers can be easily integrated into the Cylon Controls BACnet system architecture.

By default the **CBT-STAT** and **CBT-STAT-H** operate in User mode – see *User Mode* on page 8 for details.

The **CBT-STAT** or **CBT-STAT-H** can be put into Engineering Mode, allowing the display to be used as a commissioning tool, adjusting preset points in the Unitary Controller's default strategy. See *Engineering Mode* on page 12.

SECTION 2 : USER MODE

CBT-STAT and **CBT-STAT-H**

USER MODE

User mode is the default behavior for the **CBT-STAT** and **CBT-STAT-H** keypads.

Keypad and Display

Temperature

In User mode, the 1st line (large digits) a on the display shows the current Temperature Sensor reading.

Humidity

On the **CBT-STAT-H**, the 2nd line (small digits) **b** shows the current Humidity Sensor reading.

Temperature Setpoint

On the **CBT-STAT**, the 2nd line (small digits) **b** shows the current value of the Temperature Setpoint.

On the **CBT-STAT-H**, pressing any of the buttons **A b** or **v** changes the 2nd line (small digits) **b** to show the Temperature setpoint.

How to adjust the Temperature Setpoint

If the Controller's Strategy has been configured to permit it, the user can adjust the Temperature setpoint or occupancy status.

- Press any button so that the temperature setpoint is displayed on the second line, with a flashing unit symbol.
- Press the up button (a) or down button (b) to adjust the setpoint value by the span defined in the Controller's configuration, until the desired temperature setpoint is displayed.
- The right button **b** can also be used to request the Strategy to override the schedule and force occupancy mode. *Permit Occupancy Override* must be enabled in the controller configuration.

Operation Mode

At the bottom of the display there is a line of icons c that give information about the current operation of the CBT12iVAV or CBT14 Unitary Controller's Strategy:

((()))	Indicates that the controller is operating in 'heating' mode.				
₩	Indicates that the controller is operating in 'cooling' mode.				
Î	Indicates that the controller strategy is currently operating in 'occupancy' mode.				
Þ	Indicates that functions of the Controller Strategy are in manual override mode.				
▲	Indicates that an alarm state is detected in the controller strategy.				
S	Indicates that the fan is operating.				
×	Indicates that the keypad is operating in Engineering mode.				

SECTION 3 : ENGINEERING MODE

ENGINEERING MODE

Keypad and Display

How to enter Engineering Mode

- 1. Press and hold ("long-press") both the Up button A and Down button together for at least 3 seconds until the 1st line (large digits) displays the text PR55 and the 2nd line displays 5555 with the right-most digit flashing.
- 2. Enter the Engineering Mode password by changing the number on the 2nd line **b** as follows:
 - Press the up igstarrow button or down igstarrow button to change the value of the flashing digit.
 - Use the left and right buttons to move between digits.
 - The default password is 9999_ which can be changed over the network.
 - To reset the entered password to the default, press and hold the left button \P
- 3. When the correct password is displayed, press and hold ("long-press") the right button 🕨 to accept it and to open the first menu page.

How to exit the Engineering Mode

• If you wish to exit Engineering mode at any point without entering the password, press and hold ("long-press") both the up (and down v buttons together.

USING THE ENGINEERING MODE MENUS

When the correct password is entered, the Engineering Menu page 1 line **D** i will be displayed. This is indicated in the display as follows:

PILDI пd

The 1st line (large digits) a shows the Page number and Line number of the commissioning parameters (see *Available parameters* on page 14).

The 2nd line (small digits) b shows the label for the parameter addressed by the current line.

Navigating through the Engineering Menus

To scroll through the lines on the current page, use the the up \frown and down ∇ buttons (short press).

To navigate to a different page, use the right \blacktriangleright and left \triangleleft buttons (short press).

Editing a parameter

To view or edit the value of the parameter on the current line, press and hold ("long-press") the right button igvarbox .

The 2nd line (small digits) b will change to show the current value for that parameter, with either the rightmost character (when the value is a number) or the whole text (when the value is an option label) flashing.

- Press the up button \clubsuit or down button \blacktriangledown to change the value of the flashing digit or label.
- **Note:** In the case of digits, this is not a simple change to the digit itself, but an addition or subtraction (from the full parameter value) of the value represented by that specific digit.

For example, if the value is +127, then the left-most digit ("1") represents 100. If that digit is selected, then the down \bigcirc button will first change it to +027 (subtract 100 from 127), then another press of the Down button will change it to -073 (subtract 100 from 27).

- Use the left and right buttons to move between digits
- To reset the parameter to its default value, press and hold the left button \P
- To apply the edited value, press and hold the right button lacksquare

AVAILABLE PARAMETERS

The parameters that can be adjusted are defined by setpoints in the **CBT12iVAV** or **CBT14** Unitary Controller's strategy, with the exception of the device parameters on Menu Page 1.

This section lists all of the editable parameters by Menu Page, which can be accessed as detailed in *Using the Engineering Mode menus* on page 13.

Refer to MAN0113US CBT12iVAV User Guide, MAN0139US CBV-2U4-3T & CBV-2U4-2T-N, MAN0128US_CBTCBT-3T6-5R_HeatPump or MAN0130US_CBT-3T6-5R_RoofTopUnit for a detailed explanation of the Unitary Controller setup and sequencing.

Menu Page 1: Device Setup

Line	Display	Parameter	Range
01	PILOI a	Device Instance	0-4 194303
02	P ILO2 TAC	MSTP Station	רבו ס
03	Р ILOЭ БАИЛ	Baud Rate	 □ = 9,600 baud, I = 19,200 baud □ = 38,400 baud ∃ = 76,800 baud

Menu Page 2: Configuration

Line	Display		Display Parameter		Range	
01	PZLO I	InE A	InputConfigA	-128 to +128		
02	P2L02	In[b	InputConfigB	-128 to +128		
03	P2L03	OUC A	OutputConfigA	-128 to +128		
04	P2L04	ОИС Ь	OutputConfigB	-128 to +128		
05	PZLOS	0UC c	OutputConfigC_Bsbd	-128 to +128		
06	P2L06	DUC 8	AOConfigD	-128 to +128		

Menu Page 3: Setpoints

Line	Display		Parameter	Range
01	P3L0 I	OcCOOL	ZoneOccCoolStpt	0- 100_0
02	P3L02	OcHEAL	ZoneOccHeatStpt	0- 100_0
03	P3L03	IJ∩ОсСо∟	ZoneUnoccCoolStpt	0- 100_0
04	PBLO4	UnHERE	ZoneUnoccHeatStpt	0- 100_0
05	PƏLOS	SPAn	SetptSliderSpan	0- 10_0
06	P3L06	Pr 18 11-7	TABPriAirMAXStpt	0-9999
07	РЭГОЛ	Pr iß ind	TABPriDbandStpt	0-9999
08	P3L08	Pr iA irA	TABPriAirMaxHgtStpt	0-9999
10	P3L ID	FAnd	TABFanDbandStpt	0-9999
11	P3L I I	FAnn	TABFanMaxStpt	0-9999
12	P3L I2	FAnA	TABFanHtgMaxStpt	0-9999
13	P3L I3	FAnSb	TABFanStandbyStpt	0-9999
14	P3L I4	FAn d is	TABParallelDisableFanSP	0-9999
15	P3L IS	FAnLco	SeriesFanStartLckOutSP	0-9999

Menu Page 4: Primary Balancing

Line	Display		Parameter		Range	
01	P4L0 I	dA Cu	DampClosedMan		on oFF	
02	РЧL 02	dR rE	DamperReverse		FudrEu ("FWD" "REV")	
03	РЧЬОЭ	A .r 0	TABPriAirZero		on oFF	
04	РЧСОЧ	dud iR	TABPriDuctDia (round equi	valent) [CBT12iVAV only]	0 100	
05	РЧЬОБ	НРіс	KFactorOut TABPriPickupK	[CBV-2U4-3T(-N) only)] [CBT12iVAV only]	0 10-000	
06	РЧL06	A FE	PriAirFlowCV		0-9999	
07	РЧЬОТ	R IFE	EffPriAirFlowSTPt		0-9999	
08	РЧЬОВ	H FR⊂	TABPRiKFactor	[CBT12iVAV only]	I 10_00	
09	РЧL 09	8 .r	KFactorSelect TABPRiAirManMode	[CBV-2U4-3T(-N) only)] [CBT12iVAV only]	on off	
10	РЧL 10	SEŁ	MeasuredFlow/K TABPRiManStPt	[CBV-2U4-3T(-N) only)] [CBT12iVAV only]	0-9999	
11	P4L II	Hood	TABPriHoodAtMax	[CBT12iVAV only]	0-9999	
12	P4L 12	CA∟	TABAutoCalKFactor	[CBT12iVAV only]	on oFF	
13	P4L 13	d ^	DampMaxMan		on off	
14	PYL IY	d u	DampMinMan		on oFF	
15	P4L 15	d o	DampOpenMan		on off	

Menu Page 5: Fan Configuration

Line	Display		Parameter	Range
01	PSLO I	dA Au	DampAuxMan	AUto iAn
02	PSLO2	H ESE	ElecHeatCFMTestStpt	0 100
03	PSL03	H īAn	EnableManualHeatCmd	AULo iAn
04	PSL04	HERE	ManualSlaveHeatCmd	0 100
05	PSLOS	FAn	FanCmdAnimation	AUto iAn
06	PSL06	FAnSP	EffFanSpeedCmd	0 100
07	PSLOT	C īAn	EnableManualCoolCmd	RUEo iAn
08	PSL08	[001	ManualSlaveCoolCmd	0 100

Zeroing Airflow sensor

The **CBV-2U4-3T(-N)** comes from the factory with the airflow sensor zeroed. To compensate for possible air leakage around the damper, users are able to zero the airflow sensor in the field. To zero the airflow sensor, users will need to do the following:

- 1. Drive damper to the closed position by enabling *DampCloseMan* (P4L01).
- 2. After damper has fully shut, set TABPriAirZero (P4L03) to on.

After 10 seconds the T<u>ABPriAirZero</u> (P4L03) will be automatically set back to off and the airflow sensor will now be zeroed.

Be sure to disable <u>DampCloseMan</u> (P4L01) when finished with this step.

Airflow Calibration Procedure

This section provides information on the Airflow sensor calibration procedure of the **CBV-2U4-3T** airflow sensor using both Flow/K and K select in the VAV Flow Calculation firmware block

Using Flow/K

- 1. Set <u>KfactSelect</u> (P4L09) to TRUE.
- 2. Set Max cfm flow at <u>TABPriAirMaxStpt</u> (P3L06).
- 3. Set to DamperMaxMan (P4L13) to TRUE.
- 4. Allow airflow <u>*PriAirFlowCV*</u> (P4L06) to reach <u>*TABPriAirMaxStpt*</u> (P3L06). Let damper modulate until airflow balances out.
- 5. Enter balancers airflow reading in CFM in *MeasuredFlow/K* (P4L10) FactorSelect.
- 6. Again, allow airflow <u>PriAirFlowCV</u> (P4L06) to reach <u>TABPriAirMaxStpt</u> (P3L06). Let damper modulate until airflow balances.
- 7. Repeat as necessary.
- 8. Calculated K factor can be read at *KFactorOut*(P4L05)
- 9. Set *DampMaxMan* (P4L13) to FALSE when complete.

2 point balancing with minimum flow can also be achieved by doing the following:

- 10. After balancing system to the maximum air flow, Set min cfm flow at <u>TABPriDbandStpt</u> (P3L07)
- 11. Set DampMinMan (P4L14) to TRUE
- 12. Allow airflow *PriAirFlowCV* (P4L06) to reach *TABPriDbandStpt* (P3L07)
- 13. Enter balancers airflow reading in CFM in MeasuredFlow/K (P4L10)
- 14. Again, allow airflow *PriAirFlowCV* (P4L06) to reach *TABPriDbandStpt* (P3L07)
- 15. Calculated K factor can be read at <u>*KFactorOut*</u> (P4L05)
- 16. Set <u>*DampMinMan*</u> (P4L14) to FALSE when complete.

Using K Select

- 1. Set <u>*KfactSelect*</u> (P4L09) to FALSE.
- 2. Set MeasuredFlow/K (P4L10) to unit manufacturer K-FACTOR
- 3. Calculated flow can be read at *PriAirFLowCV* (P4L06)

BALANCING PROCEDURE – CBT12iVAV

This method will auto-calculate and set the K factor P4L08 <u>TABPriKFactor</u> (A214).

To utilize this feature, perform the following steps on Menu Page 4: Primary Balancing.

- **Note:** Each parameter is shown below with its Menu page and line number, its *Parameter Name* and the associated (Setpoint Number)
 - 1. After determining what the maximum CFM setpoint is going to be for the VAV box, set P4L09 <u>TABPriAirManMode</u> (D204) to **Dn**.
 - 2. Note the value in PHL ID <u>TABPriManStpt</u> (A218).
 - 3. Wait for the value of PHLD6 <u>PriAirFlowCV</u> (A194) to stabilize, then:
 - If the value of <u>P4LD5</u> <u>PriAirFlowCV</u> (A194) reaches the value noted in step 2, get a hood reading at the diffusers to get the actual CFM of the VAV box.
 - If the value of P4L05 <u>PriAirFlowCV</u> (A194) doesn't reach the value noted in step 2, set P4L 10 <u>TABPriManStpt</u> (A218) to a value below the value reached by P4L05 <u>PriAirFlowCV</u> (A194) as a reference point.
 - 4. Set the P4L 11 <u>TABPriHoodAtMax</u> (A245) to the actual CFM reading that was recorded utilizing the hood.
 - 5. Set the P4L 12 <u>TABAutoCalKfactor</u> (D151) to Dn. It will stay Dn for 4 seconds then automatically be set back to DFF. This will automatically set the P4LDB <u>TABPriKFactor</u> (A214) internally, through the Strategy calculating the required K factor. It will also set the P4LD9 <u>TABPriAirManMode</u> (D204) to DFF, and the calculated P4LD7 <u>EffPriAirFlowStpt</u> (A197) will go back to normal operation.
- Note:
 When setting the P4L09 <u>TABPriAirManMode</u> (D204) to **Dn**, it will stay on until the time entered on point <u>TABPriAirManModeTimer</u> (A217) has expired, unless P4L 12 <u>TABAutoCalKfactor</u> (D151) is set to **Dn**. The default for <u>TABPriAirManModeTimer</u> (A217) is 600 seconds or 10 minutes.

UNITED STATES

ONE TECHNOLOGY LANE EXPORT, PA 15632 PHONE: (724) 733-2000 FAX: (724) 327-6124

1 SUNDIAL AVE - SUITE 219 N MANCHESTER, NH 03103

75 WADE GREEN BUSINESS PARK 1301 SHILOH ROAD NW, SUITE 1411 KENNESAW, GA 30144

IRELAND

CYLON CONTROLS LTD CLONSHAUGH BUSINESS & TECHNOLOGY PARK CLONSHAUGH DUBLIN 17 IRELAND T + 353 1 245 0500 F + 353 1 245 0501 E INFO@CYLON.COM

UK

CYLON CONTROLS UK LTD ENDEAVOUR HOUSE COOPERS END ROAD ST ANSTED

ESSEX CM24 1SJ UNITED KINGDOM T + 44 870 178 1800 F + 44 870 403 6570 E INFO@CYLON.COM

WWW.CYLON-AUTOMATRIX.COM